Review of Electrochemical Capacitors Based on Carbon Nanotubes and Graphene

نویسندگان

  • Jian Li
  • Xiaoqian Cheng
  • Alexey Shashurin
  • Michael Keidar
چکیده

Electrochemical capacitors, which can store large amount of electrical energy with the capacitance of thousands of Farads, have recently been attracting enormous interest and attention. Carbon nanostructures such as carbon nanotubes and graphene are considered as the potentially revolutionary energy storage materials due to their excellent properties. This paper is focused on the application of carbon nanostructures in electrochemical capacitors, giving an overview regarding the basic mechanism, design, fabrication and achievement of latest research progresses for electrochemical capacitors based on carbon nanotubes, graphene and their composites. Their current challenges and future prospects are also discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graphenated carbon nanotubes for enhanced electrochemical double layer capacitor performance

Articles you may be interested in Solvothermal synthesis of NiAl double hydroxide microspheres on a nickel foam-graphene as an electrode material for pseudo-capacitors Effect of nano-filler on the performance of multiwalled carbon nanotubes based electrochemical double layer capacitors Composite electrodes of activated carbon derived from cassava peel and carbon nanotubes for supercapacitor app...

متن کامل

Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbidederived carbon, zeolitetemplated carbon, carbon aerogels, carbon nanotubes, onionlike carbon, and graphene

Electric double layer capacitors, also called supercapacitors, ultracapacitors, and electrochemical capacitors, are gaining increasing popularity in high power energy storage applications. Novel carbon materials with high surface area, high electrical conductivity, as well as a range of shapes, sizes and pore size distributions are being constantly developed and tested as potential supercapacit...

متن کامل

Preparation and Characterization of Reduced Graphene Oxide Doped in Sol-Gel Derived Silica for Application in Electrochemical Double-Layer Capacitors

In this study, a new graphene ceramic composite (GCC) was prepared based on the reduced grapheneoxide (rGO) doped in sol-gel derived silica. The GCC was prepared by dispersing rGO nanosheets intothe sol-gel precursors containing methyl triethoxysilane, methanol and hydrochloric acid solution.During an acid catalyzed hydrolyze reaction and gelation proc...

متن کامل

Multiscale modeling of carbon nanotube growth on a supercapacitor electrode

Vertically Aligned Carbon Nanotube (VACNT) – based electrochemical double layer capacitors, called “supercapacitors” are intermediate systems that can potentially bridge the power/energy gap between traditional dielectric capacitors (high power) and batteries (high power density). However, their future is uncertain because of technical stumbling block in their fabrication related to the post-gr...

متن کامل

Frontiers in nano-architectured carbon–metal oxide electrodes for supercapacitance energy storage: a review

Supercapacitor (SC) is an energy storage technology that bridges the gap between conventional capacitors and rechargeable batteries. Emerging nano-architectured carbon–metal oxide composites are promising for electrode designs for supercapacitors due to their unique strategy utilizing electrochemical double-layer capacitance (EDLC) and pseudo-capacitance together in single cell to optimize the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012